Tech and Computer

Tech and Computer news




Last update03:44:00 PM GMT

Back Mathematics Mathematical Modeling Mathematicians develop new method for describing extremely complicated shapes

Mathematicians develop new method for describing extremely complicated shapes

  • PDF

TechAndComputer (July 30, 2012) — Mathematicians at the Institute for Advanced Study in New Jersey "bridged" topology and fractals and made a discovery that could lead to a new way of describing extremely complicated shapes such as the configuration of the tiniest defects in a metal or even the froth of a breaking wave.

Topology is a powerful branch of mathematics that looks at qualitative geometric properties such as the number of holes a geometric shape contains, while fractals are extremely complicated geometric shapes that appear similarly complicated even when viewed under a microscope of high magnification.

Bridging the topology and fractals, as described in the American Institute of Physics' Journal of Mathematical Physics (JMP), relies upon a recently developed mathematical theory, known as "persistent homology," which takes into account the sizes and number of holes in a geometric shape. The work described in JMP is a proof of concept based on fractals that have already been studied by other methods -- such as the shapes assumed by large polymer molecules as they twist or bend under random thermal fluctuation.

Many geometric structures with fractal-like complexity arise in nature, such as the configuration of defects in a metal or the froth of a breaking wave. Their geometry has important physical effects too, but until now we haven't had a vocabulary rich enough to adequately describe these and other complicated shapes. The mathematicians plan to use the vocabulary provided by persistent homology methods to investigate and describe complicated shapes in a whole new way.

Story Source:

The above story is reprinted from materials provided by American Institute of Physics (AIP), via Newswise.

Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:

  1. Robert MacPherson, Benjamin Schweinhart. Measuring shape with topology. Journal of Mathematical Physics, 2012; 53 (7): 073516 DOI: 10.1063/1.4737391

Note: If no author is given, the source is cited instead.

Disclaimer: Views expressed in this article do not necessarily reflect those of TechAndComputer or its staff.